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(b

The reconstructed microwave images from slices of (a) p(p)/p and
(b) T'( p) data measured in the frequency range 4-10 GHz.

Fig. 4.

position of the specular region when the T/R unit is at the other
side. Therefore, the I' (p) data shown in Fig. 2(b) are symmetri-
cal not only to § =45° but also to the center, whereas p(p)/p
data are symmetrical to § =45° only. However, they both yield
images with the same feature showing the cylinder profile formed
by specular regions as given in Fig. 4(a) and (b).

IV. CoONCLUSIONS

In this paper, we have discussed the microwave images of a
metallic convex object under physical optics approximations. It is
shown that the image reconstructed from Bojarski’s identity is
the “edge-enhanced” version of the object characteristic function
of the distribution of specular reflection regions. The same image
can also be reconstructed from the range-normalized scattered far
field using one-dimensional Fourier inversion and a back-
projection algorithm.
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The Input Impedance of a Hollow-Probe-Fed,
Semi-Infinite Rectangular Waveguide

JOHN M. ROLLINS anDp JOHN M. JAREM, MEMBER, IEEE

Abstract —Image theory is used to determine the input impedance of a
coaxial feed in a short-circuited, semi-infinite rectangular waveguide. The
analysis presented here is applicable to hollow antenna probes of variable
height and lends itself well to accurate numerical evaluation. The numeri-
cal results are compared to results obtained from other methods and show
the efficacy of using image theory to determine the waveguide input
impedance.

1. INTRODUCTION

A common problem in many microwave applications is the
determination of the input impedance of a coaxially fed antenna
probe in a rectangular waveguide. Several closed-form solutions
[1], [2] of varying accuracy have been developed for the case
where the waveguide is infinite in the forward and reverse direc-
tions of propagation. Considerable effort has also been expended
in achieving input-impedance expressions for the case where one
of the waveguide arms has been terminated with a short-circuit-
ing plate, resulting in a semi-infinite waveguide geometry (Fig. 1).

In determining the input impedance of an infinite waveguide,
one method, which has been pursued by Williamson [1], is the use
of image theory to develop expressions for the electric and
magnetic fields in the vicinity of the coaxial aperture. In his
analysis, Williamson assumes perfect conductivity for the wave-
guide walls and shows that the system is equivalent to an infinite
array of image sources which are treated as if they existed in free
space and contributed to the fields affecting the primary wave-
guide feed (parent source). Each source, real or image, radiates
fields which are due to a magnetic surface current in the annular
region of its aperture and an electric surface current which flows
on the surface of the probe. For the infinite waveguide shown in
Fig. 1, Williamson obtains an expression for the admittance using
a hollow probe of arbitrary height [1].

The introduction of a short circuit plate down the waveguide at
a distance u from the center of the probe results in two arrays of
probe and aperture images parallel to each other and separated
by a distance 2u. Each image is a source of radiating fields which
are felt at the coaxial aperture and ultimately affect the input

Manuscript received October 30, 1987; revised June 28, 1988. This work was
supported by Sandia National Laboratories, Albuquerque, NM 87185, under
Contract 01-3817.

The authors are with the Department of Electrical Engineering, University
of Texas at El Paso, El Paso, TX 79968.

IEEE Log Number 8927786.

0018-9480,/89 /0700-1144$01.00 ©1989 IEEE



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 7, JULY 1989

d

—_—

22
28
1

il
2b

1
—

e
a]

(a)

FA
1¢
J

2h

r
AV
FAY
i —7
(
T
v/

D
(b)

(a) Waveguide system and dimensions. (b) Infinite arrays; probe
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Fig. 1.

impedance of the waveguide. Axial symmetry is assumed for the
current distributions of each source (a/d <0.04; see [8]). In
order to obtain expressions for the total electromagnetic fields at
the aperture, we must obtain an array factor which summarizes
the superposition of average values of the field contributions
from each of the image sources.

This array factor involves four terms, two representing the
images in the plane coincident with the parent source and two
representing the sources in the short circuit image plane. The
array factors are calculated following Williamson’s procedure
outlined in [3]. The resulting expressions may be used in an
admittance formula derived by Williamson [1] (for an infinite
waveguide). A modified expression representing the semi-infinite
case results and is given by

pm

vev- %

ef"(-1)" ¥ Y, (=1)"h,(me)
p=0 m=0

where the waveguide-height probe admittance is
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where g2 = (ma/kh)* ~1 and ¢=a(h—1)/h. In addition,
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SC and SC+ are the array factors which have been modified by
the addition of the. short circuit plate. Hence, they include
contributions from the second array of images and are given by
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Note that SC*(A4, B,C, D)= (2j/7)SC(jA, jB, jC, D).
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Fig. 2. Method-of-moments results using a sold probe are compared to
those for 1mage theory based on a hollow-probe configuration. @ = 0.0635
cm, d=5704 cm, h=2880 cm, /=1.440 cm, u=1920 cm, ¢/d=0.5,
relative permittivaty: 1.0, (50 € coaxial line).

Fig 3. Image theory results for a hollow probe are compared to experimen-
tal results (solid probe). ¢ =01778 cm, d =5715 cm, h=2223 ¢cm, u=
1524 cm, e /d = 0 5, relative permittivity: 3.75, for probe heights. #; =1 270
cm, hy =1.524 cm, hy;=1.778 cm, hy = 2,032 cm (50 © coaxial Iine).

In the above expressions, Y, represents the input admittance of
a waveguide whose probe extends to the top. The parameter £ is
the wavenumber, Z, is the free-space intrinsic impedance, and a,
b, d, e, u, and h are the waveguide dimensions as shown in Fig.
1. The e, and Y, coefficients, which have been derived by
Williamson [1] using the method of moments, describe the effect
of electric fields above a variable-height probe on the input
admittance of the waveguide. As in [1], convergence of the series
giving the e, coefficients is fairly rapid due to the diagonal
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nature of the matrix associated with it. Negligible accuracy is
gained in setting the order greater than 4.

II. NUMERICAL RESULTS

A numerical evaluation of the admittance expression was made
and the results were compared to data available from other
sources. In the first case (see Fig. 2), the method-of-moments
algorithm developed by Jarem [2] generated data for comparison.
His program, based on a solid-probe configuration, produced
results which differed moderately from those of the image method.
The amount of the disparity is believed to be due to the differ-
ence between the fields emanating from a hollow probe and a
solid one [7]. (The internal current which flows in a hollow probe
is not present in a solid one and can have a small effect on the
outside fields.)

A comparison was also made with experimental results [2] over
a range of two frequencies and four probe heights (see Fig. 3).
The experimental waveguide used a solid probe, and a moderate
displacement between the image theory solution and the experi-
mental results is seen to occur.

The results shown in Figs. 2 and 3, though displaying moderate
differences between alternative data, suggest a fair degree of
efficacy in using this image theory method for semi-infinite
waveguide input impedance determinations, even if a solid probe
is used.

III. CoONCLUSIONS

The method of images as developed by Williamson can be used
as an alternative approach in determining the input impedance of
a hollow-probe-fed, semi-infinite rectangular waveguide. Further
assessment of this method could best be facilitated through
experimental comparison where an actual hollow probe is used.
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